

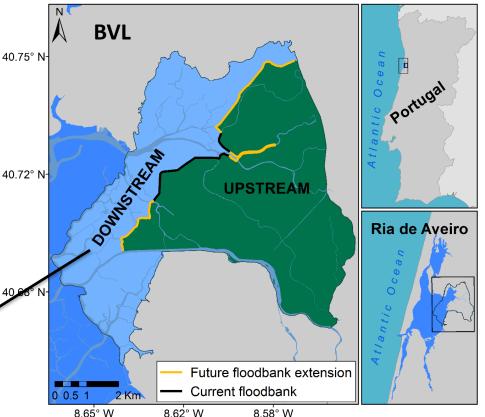
Participatory coastal management through elicitation of ecosystem service preferences and modelling driven by "coastal squeeze"

Javier Martínez–López, <u>Heliana Teixeira</u>, Mariana Morgado, María Almagro, Ana I Sousa, Ferdinando Villa, Stefano Balbi, Ana Genua–Olmedo, Antonio J A Nogueira, Ana I Lillebø 16/10/2018

The AQUACROSS project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642317.

The Baixo Vouga Lagunar Ria de Aveiro coastal lagoon - Portugal

- Special Protection Area under the EU Habitats and Birds Directives
- Ratura 2000 Network of protected areas distinctive feature – "is not a system of strict nature reserves from which all human activities would be excluded, but instead centres its approach on people working with nature rather than against it"
- Natura 2000 message: ensure that these sites are "managed in a sustainable manner, both ecologically and economically"



The Baixo Vouga Lagunar context

- Prevent surface salt water intrusion during high tide periods into agriculture fields: floodbank extension
- Changes in the hydro-ecological dynamics:
 - the water level downstream expected to rise
 - increased submersion period of tidal wetlands

www.aquacross.eu/

Summary of the Methodology

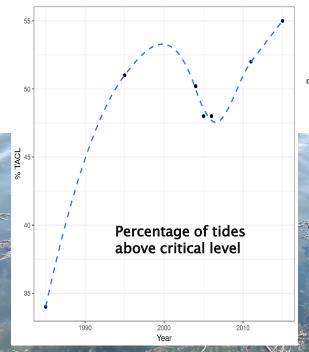
- 1. We have modelled saltmarsh plant species and habitats under a coastal squeeze scenario
- 2. Mapped ecosystem services based on expert valuation (semi-quantitative)
- 3. Ecosystem services were prioritized according to stakeholders' preferences
- 4. Key areas for ES provision were established using spatial multi-criteria analysis (smca)

1. Saltmarsh plant species models

≈ Four species:

- % coverage (adapted Braun-Blanquet);
- 13 transects (100 m);
- 5 campaigns: 2004 (Aut/Win), 2005 (Spr); 2005 (Aut), 2006 (Spr), 2015 (Spr)
- ≈ Explanatory variables:
 - Salinity
 - Elevation/Bathymetry m
 - Distance to streams m
 - Percentage of tides above critical level yearly ~ submersion period
- Species distribution models: GLM betareg

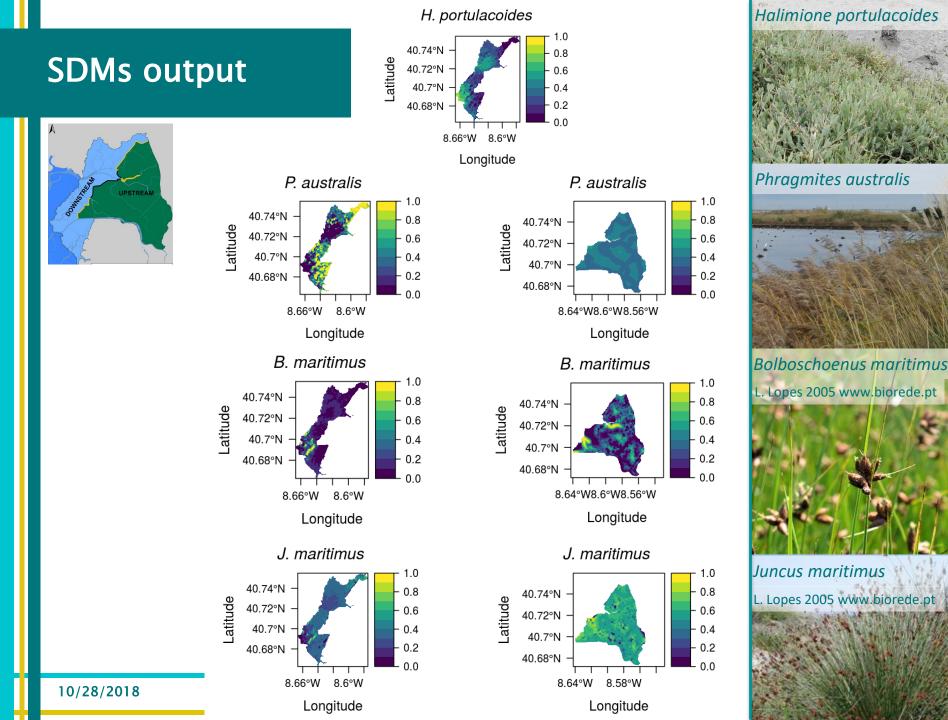
Phragmites australis


Juncus maritimus L. Lopes 2005 www.biorede.pt

10/28/2018

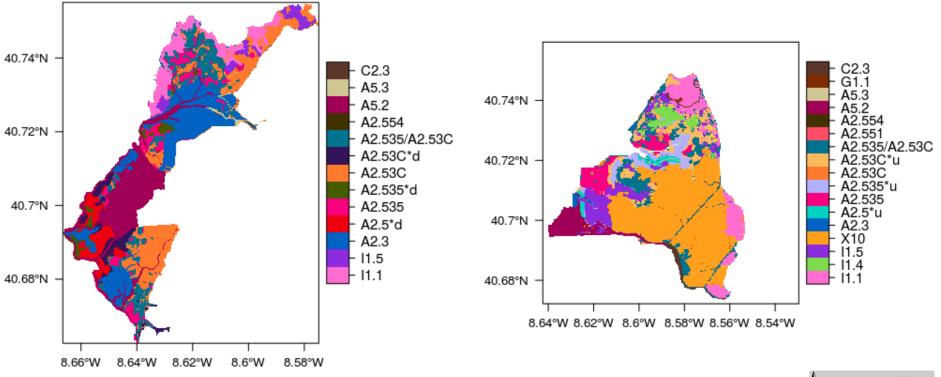
ESP 2018, San Sebastian

Explanatory variables



Ŵ

5 km


From species distribution to habitats

- Adapted the EEA EUNIS habitat classification 2012 (incl. typical associations observed along the gradient)
- ≈ Based on predicted relative cover of species (modelled)
- Multivariate classification analysis (hierarchical clustering)
- ≈ IndVal analysis (indicator species)

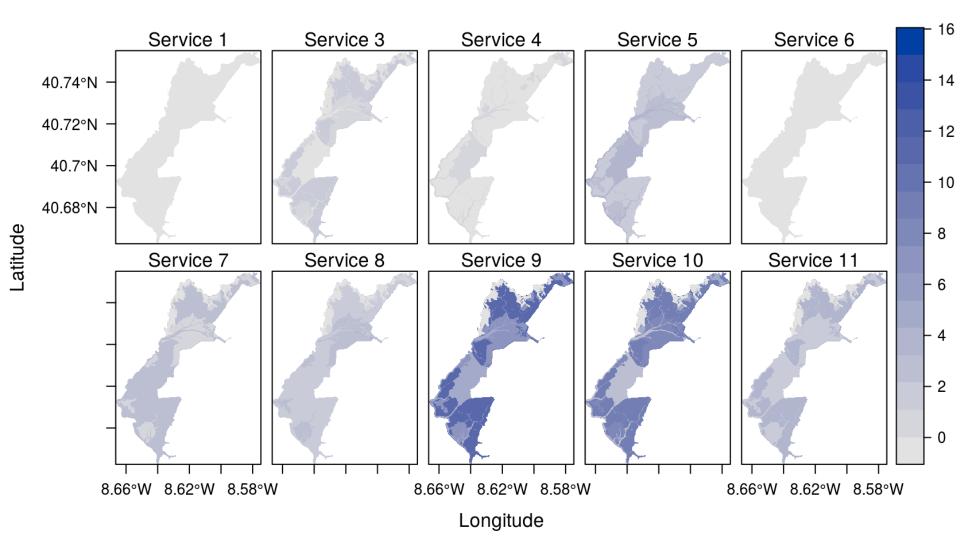
Predicted habitats mapping

www.aquacross.eu/

ESP 2018, San Sebastian

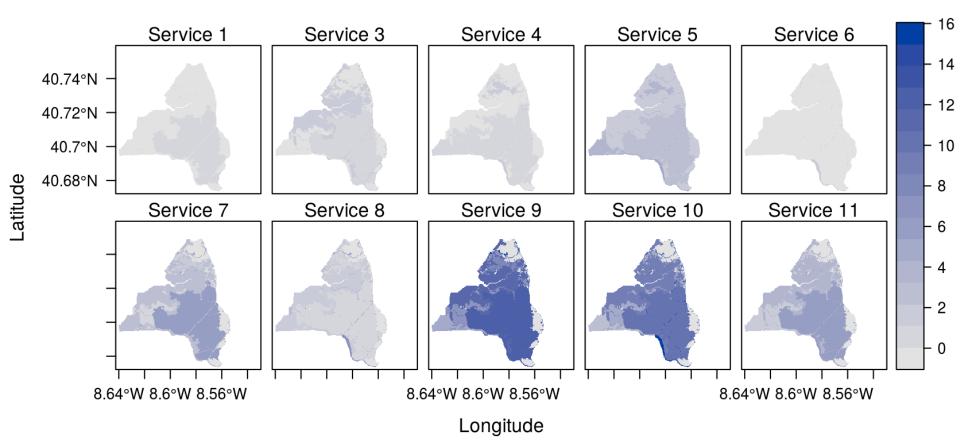
10/28/2018

2. Ecosystem service proxies


- ≈ CICES classification
- ≈ Potential to supply ES expert knowledge valuation (0, 1, 2)
 - lookup table based on the contribution of habitats and associated mobile biotic groups

≈ ES summarized into 11 types:

- (1) Biotic based energy sources;
- (2) Abiotic energy sources
- (3-4) biotic/abiotic materials;
- (5-6) nutritional biotic/abiotic substances;
- (7) mediation of flows;
- (8) mediation of waste toxics and other nuisances;
- (9) maintenance of physical chemical biological conditions;
- (10) physical and intellectual interactions with biota, ecosystems, land and seascapes environmental settings;
- (11) spiritual symbolic and other interactions with biota ecosystems and land seascapes environmental settings


ES mapping downstream

ES mapping upstream

3. Elicitation of preferences

\approx Workshop with stakeholder (n=17 individuals):

- (1) Policy / Governance,
- (2) Public Administration,
- (3) Citizens,
- (4) Environmental scientists,
- (5) Interest groups and
- (6) Business
- ≈ Pairwise comparison of ES (AHP ranking) using online form
- Analysis of responses (*Consistency ratio of individual judgements ICR*)
- Multivariate classification analysis of individuals (*hierarchical clustering*) to identify main groups
- Spatial Multicriteria Analysis to identify priority areas (SMCA EVAMIX)

10/28/2018

Interações físicas entre o Homem e a Natureza para fins de entretenimento

Observação de aves, snorkeling, mergulho, caminhada, escalada, passeios de barco, pesca de

ESS_C_PhysIntel_PhysicalExperientialInteractions

lazer (pesca à linha) e caça de lazer

DESCRICÃO

EXEMPLOS

Habitats do Caso de	A2.61	A5.43	C1.3	01.21	11.4
A2.22	A5.22	81.3	C2.3	01.22	11.53
A2.3	A5.23	81.4	C3.21	G1.31	12
A2.5	A5.24	81.6	C3.22	G1.7	JS.11
A2.535	A5.25	81.7	E5.44	G5.1	15.12
A2.53C	A5.32	61.8	GI	G5.4	X10
A2.554	A5.33	Ct	61.1	0.1	Reicol

Service Layer Credits: Source: Elen, Digraditation, Ge Aantgrid, KAL KSP, swissleps, and the Gits User Can

CÓDIGO

ESS_P_Nut_Biomass

DESCRIÇÃO

Produção de bens alimentares

EXEMPLOS

Peixes de água doce (sável); Peixes migradores (enguia, lampreia); Peixes de água salgada (solha, robalo); Marisco (crustáceos, moluscos); Cereais (arroz, trigo, milho); Aquacultura (dourada, robalo, ostras, bivalves)

sabits	ets do Caso de	Catudo				
	A2.2	A2.61	A5.43	C1.3	01.21	11.4
	A2.22	A5.22	81.3	C2.3	G1.22	11.50
-	A2.3	A5.23	81.4	C3.21	G1.31	12
1	A2.5	A5.24	81.6	C3.22	G1.7	J5.11
	A2.535	A5.25	81.7	E5.44	G5.1	J5.12
4	A2.53C	A5.32	01.0	GI	G5.4	X10
	A2.554	A5.33	C1	G1.1	0.1	Reicola
	Contexto de C	aso de Estudo	Limite das à	pues costeiras (DQ/	4	
and the second	Laure Contine Road	on the Designation of	soften Radiater Gauge	subles Children Di	a subma subma arry of	Contraction of the local division of the loc

Service Layer Credits Source: Enr. Digita/Gebe. Geo Aerogra, KIN, KIP, secontori, and the GIS User Com-

HABITAT(S) ONDE OCORRE:

A (A2.2, A2.22, A2.3, A2.5, A2.535, A2.53C, A2.61, A7)

Habitats marinhos

Praias, sapais costeiros, pradarias marinhas, bancos de areia, lodaçais e coluna de água

B (B1.3, B1.4, B1.6, B1.7, B1.8)

Dunas costeiras Dunas herbáceas, arbustivas e arbóreas (pinhal litoral)

C (C1, C1.3, C2.3, C3.21, C3.22)

Lagos, Rios e Zonas húmidas de água doce Lagos, rios, juncais e caniçais dulçaquícolas

E5.44 e G1 (G1.1, G1.21, G1.22 G1.31) Habitats ripicolas

Habitat ripícola arrelvado, bosque paludoso, amial ripícola, ulmeiros e freixos

J5 (J5.11, J5.12)

Habitats construídos, industriais e artificiais Aquacultura e Salinas (Marinhas)

X10 Bocage

Mosaico de campos de cultivo e pastagens

HABITAT(S) ONDE OCORRE:

A (A2.2, A2.22, A2.3, A2.5, A2.535, A2.53C, A5.22, A5.23, A5.25, A5.32, A5.33, A5.43, A7) Habitats marinhos

Praias, sapais costeiros, bancos de areia, lodaçais, sedimento infralitoral e coluna de água (ria e mar)

C (C1, C1.3, C2.3) Lagos e Rios

Lagos, lagos permanentes eutrofizados e rios

E5.44 & G1 (G1.1, G1.21, G1.22 G1.31)

Habitats ripicolas Habitat ripícola arrelvado, bosque paludoso, amial ripicola, ulmeiros e freixos

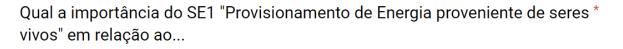
11 (11.1, 11.5)

Agricultura Terrenos aráveis e cultivados, pousios.

J5 (J5.11, J5.12)

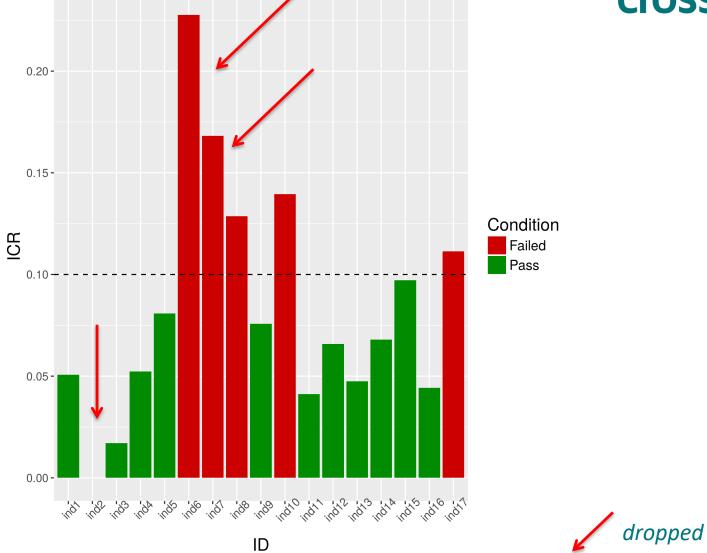
Habitats construídos, industriais e artificiais Aquacultura e Salinas (Marinhas)

X10 Bocage


Mosaico de campos de cultivo e pastagens

SE5

Stakeholder questionnaire Analytic hierarchy process (AHP)


	muito menos imp	menos importante	igualmente impo	mais importante	muito mais impo
SE2 Provisionam	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SE3 Provisionam	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SE4 Provisionam	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SE5 Provisionam	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
SE6 Provisionam	\bigcirc	\bigcirc	. /	*	~
SE7 Regulação &	\bigcirc	\bigcirc			-
SE8 Regulação &	\bigcirc	\bigcirc	And		
SE9 Regulação &	\bigcirc	\bigcirc	obrigadal		
SE10 Cultural: Int	\bigcirc	\bigcirc			A-10

aqua Cross

Likert-type scale: 5 levels bidirectional ordinal scale, with equivalent number of negative and positive statements

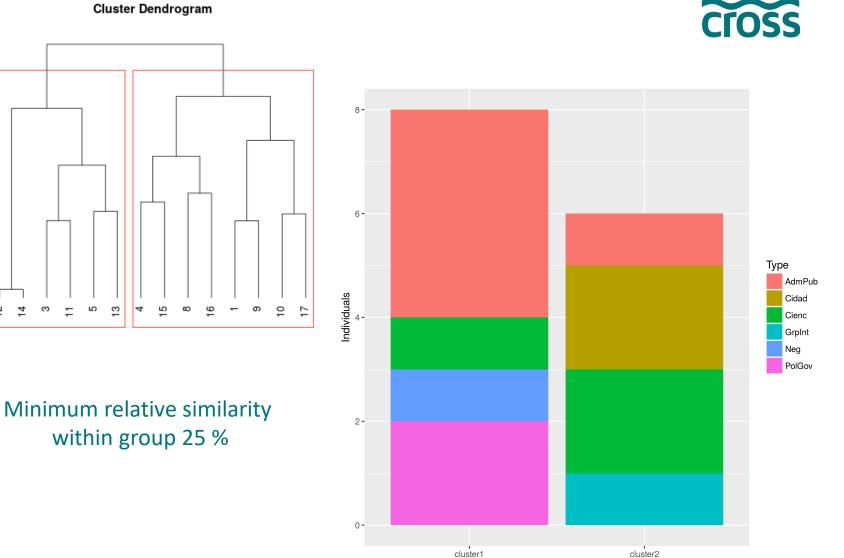
Consistency ratio of individual judgements

Cluster Dendrogram

42

10

œ


4

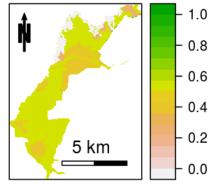
2

0

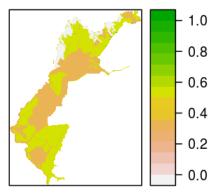
2

Height 9

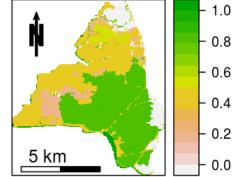
Cluster

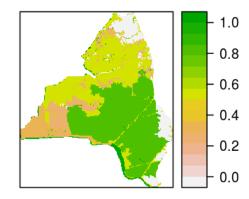

enbe

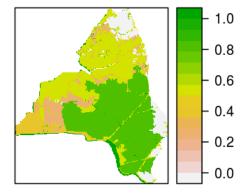
Mean weights of each Ecosystem Service per cluster

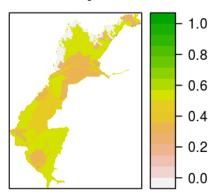

1 (most important) to 10 (less important)

Ecosystem Service	Cluster 1	Cluster 2	Compromise
ES1	4	5.2	4.6
ES3	4.1	3.7	3.9
ES4	5.9	1.6	3.7
ES5	1	10	5.5
ES6	6	1	3.5
ES7	1.4	6.6	4
ES8	4.2	8.5	6.3
ES9	7.1	9.3	8.2
ES10	8	2.1	5.1
ES11	10	1.3	5.7


Cluster 1


Cluster 2


Cluster 1


Cluster 2

Compromise

Compromise

Conclusions

- \approx Our results indicate the main areas to be preserved at the BVL scale:
 - the traditional agricultural mosaic fields with a woodland element (bocage)
 - the freshwater courses and
 - the subtidal estuarine channels
- At the scale of the entire Nature 2000 site:
 - Idenfitication of compensation sites for saltmarshes and wetlands restoration
- ≈ Co-building: by combining ecology with the analysis of social preferences, management can be informed for improving the conservation of coastal ecosystems

STOTEN *special virtual issue* **"EBM in aquatic systems**" Martínez-Lopez et al. under revision Lillebo et al. 2019

Thank you very much for your attention!

bc³ | BASQUE CENTRE FOR CLIMATE CHANGE Klima Aldaketa Ikergai Sustainability, that's it!

universidade de aveiro centro de estudos do ambiente e do mar

10/28/2018

ESP 2018, San Sebastian

www.aquacross.eu/